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THE APERTURE ADMITTANCE OF A RECTANGULAR
WAVEGUIDE RADIATING INTO A LOSSY HALF-SPACE

INTRODUCTION

In this report the effective terminating admittance of a rectangular
waveguide radiating into a lossy half-space is derived. The waveguide
opens into the lossy region through an aperture in an infinite ground plane.
The electric field in the aperture is assumed to have the form of the TEjo
waveguide mode. The terminating admittance of the waveguide is then
found by computing the complex power flowing through the aperture.

Curves of the terminating admittance have been plotted as a function
of the complex propagation constant "k'" in the lossy half-space for three
common aperture sizes. Values of k corresponding to both positive and
negative dielectric constants have been included, so that the curves will
be useful in the design and interpretation of experiments for measuring
plasma properties.

This material is intended to serve as a first approximation to the
case of a thick plasma layer.

Although this general problem has been treated previously,* no
information has been available for a half-space with an arbitrary permit-
tivity and conductivity. In previous work, aperture admittance has been
found as a function of aperture size or frequency, with the half-space
assumed to be free-space.

*See, for example, M.H. Cohen, T.H. Crowley, C.A. Levis, "The
Aperture Admittance of a Rectangular Waveguide Radiating into Half-
Space,' The Ohio State University Antenna Laboratory Report 339-22,
14 November 1951. Also, L. Lewin, "Advanced Theory of Waveguide,"
Lliffe and Sons, Ltd., London, 1951, p. 121.
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FORMULATION

Consider a rectangular waveguide which radiates through an infinite
ground plane into a lossy half-space. The ground plane is assumed to be
infinitely conducting. The waveguide opening in the ground plane has
dimensions (a,b), as shown in Fig. 1.

Fig. 1. Geometry of waveguide aperture.

The semi-infinite region z > 0 is assumed to be isotropic and
homogeneous, and is characterized by a complex propagation constant

(1) k=|:wzp,oe(1- i :ngé_) :\2

where k = complex propagation constant
w = radian frequency
1L, = permeability of free space
€ = permittivity of z > 0 region
0= conductivity of z > 0 region.

]

. . +i . .
The time convention e 10t and rationalized MKS units will be used.

1691-1 2
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The electric field in the aperture is assumed to have the form of
TE)p waveguide mode, with the electric field in the x-direction. Thus

2
: ab COS{X:IXIS%’IYIS.%
(2) Ex(x,y,o) =

0: elsewhere .

The normalizing constant»JZ/ab is included for the following reason.
The transverse field components of the TE,; mode may be written

(3) E,

V(z) —e—t(x,y)

(4) H,

I(z) -ﬂt(x,y)

where ;t(x,y), _ht(x,y) are the vector mode functions* satisfying the
normalization relations

a b a b
2 prz 2 (2 2
S S |€, |2 ax dy = S g b | axdy =1,
=.a y=.b

and V(z), I{(z) are the 'transmission line" voltage and current. The
constant |Z7ab included in (2) corresponds to an aperture field of unit
voltage.

The aperture admittance Y will be found by computing the complex
power P flowing through the aperture:

(5) P=%SS(EXﬁ*)-?dxdy

*Harrington. R.F., Time Harmonic Electromagnetic Fields, p. 383.




1691-1

and then using the relation

2P
= 2p*

(6) Y =
v

where V is the aperture ''voltage'' and the asterisk indicates the complex

conjugate. The last equality in (6) is numerically correct because of
our choice of unit aperture voltage.

With the*apérture field as given in (2), the field is everywhere TE

to the y-axis. Hence the field may be represented by an electric vector
potential
(7) F =%y

where § satisfies the wave equation

(8) Vi + k3 =0

with appropriate boundary conditions. The electric and magnetic fields
are given by

(9) E=-VYXF
= 1 —_ —
(10) H = on [V(Vv- F)+ x%F] .
(o] .

In particular

3y
11 E. = =X
(11) x = 3o

*For a proof of this, see Appendix A.
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1

(12) Hy = [g%zi + kzm}.

iwp,o

For ¢ we choose a solution:

(13) g = S. S‘ f(l&,]%,)e-ikzz e-ikyy e-ikxx dk, dky

-00 =00
with

2 2
(14) k, = kz-l&-ky

where the square root is chosen so that
(15) Re(k,) >0
(16) Im(k,)< 0

corresponding to propagation in the +z-direction. Then from (11),

w w 3 - 0
(17)  Ex(x,y,z) = ( ( -ik,, f(kx,ky)e'lkzz e yY o mikyx dky dky .

- 00 =00

The inverse transform, evaluated at z = 0, gives

(18) ik, flgaky) = y f E(x,y>o) e X TGV g g
(2m)?

-00 =00

Substituting for Ex(x,y,o) from (2) results in
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b a

2 .2
I— +i +i
(19)  -iky f(ky. k) = (21"—)2 fg g ) S cos be eTikyY kX gy dy
- - a

=2 x=-Z=
Yy > 2

1 > < 2wb cos(thb)
2 s a

= — | —=— [— sin oxe

4w ab [k, (2 )

m2 - k% b2
Yy
Hence
i 2
(20)  £(ky . ky) = _i |2k 2
Tkk, Ja T2 - k; b2

and Y in (13) is then
o] [+ ¢}
2b i
(21) ¢=|—SS Ik
a ", _m" X7

Then from (11) and (12), E; and HY are found to be:

. a kb
g sin cOs \'A 3 _.k
_ZBSOOSOO_I_ (2) (;) o K27 THYX dk_ dk
a Tl'k_x ( b A

w2 - k? b?)
y

k
Sin(k a)cos( b) ik, z -ik.y -ik_x
2 & e a2 o T1yY 7% dk, dk

(nz-k;bz) y

(22) E

X

-00 = 00

a0 sin(l_(%?'_) cos(E}ZI_IZ) "
-k? -ik,z -i -i
(23) H.y=__1_ EESS (k*-k¥) ka2 mikoy Ky x
wp,o a

T kyk, (.n.l _ k; b2 )

-00 =~ 00

dkx dky .

The complex power through the aperture is

b 2
2 2 *
(24) P =% S S Ex(x,y. o) I-]y(x,y,o) dx dy.
=2 x=-2
Yy > >
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Since it is difficult to find H_(x,y,0) directly from (23), Parseval's
theorem and the convolution'theorem will be used to evaluate (24).
For the Fourier transform pair

-ik x -ik
(25) f(x,y) = yy Fllyoky) e X e V7 diey dig

=00 -« 00

1 (e 0] o0 +- +-
(26)  F(ky, ky) =(ZT)I§ S‘ fxayde X Y gy gy,

=-00 =« 00

Parseval's theorem is:

(27) S 5 f; (x,y) £ (xsy) dx dy = (2m)? S‘ 5 Fi (kx,ky)F:(kX rky) dk, dky

-00 =00 - 00 = 00

and a special case of the convolution theorem is

(28) S‘ S' £ (x,y)M,(-x,-y)dx dy = (2m)? S S F, (k ]g/)Fz(k ’ky)di(x dky'

-00 =00 =00 -0

""x\A,y, o) is zerc outside the aperture. Hence the limits of in-
tegration in (24) may be extended to infinity. Then from Parseval's
theorem and Eqs. (6), (22), (23), and (24), the admittance Y is found
to be

(29) Y= 2P* = g g E:(x,y,o) Hy(x,y,o) dx dy =

-0 =0

o kol
= (2m)? awpoy 5 - kr

(-3¢ bR

dk de .
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Next the terms of the integrand may be recombined as follows.
Let

Zb(k" kz sinz (kLa) COSZ (ELE)
(30) F,(k_,k ) = ) 2 2

" 2.2 2 _ 12 122
a“o"kx (w kyb)

_ 1

1
k Iz 2 2
2 k—kx-kY

(31)  Fylkyok) =

From Eq. (28),

(32) Y = (211)25 S Fi (ko by )Pyl sy )k, dk = S S fi (x,y)f,(-x, -y) dx dy

-00.=00 -00 =00

where f (x,y), fz(x,y) are the transforms of F, (kx’ky)'

Now we proceed to find f, (x,y) and fz(x,y). Consider f{, (x,y) first:

-ik x _-ik
(33) £ (x,y) = S‘ f Fylieok)e X ey dk, dkg

g"" 2b(k2- kz sinz(kX_a)cosz(EIP_)
S ( 2 2 _ﬂS(x _1k Y
e e

y® dk, dk

awp kz (w? - k2 b2)?
y

=00 =00

*This technique of rearranging the terms of the integrand and making
repeated use of convolution theorems appears to be a useful trick for
problems of this sort. By trying different combinations, one can find
several equivalent integrals for P. The form chosen here seemed to
be the most convenient for numerical evaluation.

y




x2 ik x o cosz(izﬂ) ' N
P e 2 Py 2 1.2 1R,y .
——=" e dk S ké-k¢) ———=5 e VY’ dk,.
o k2 xJ ! y) (w?-kZb?)* 5y
- X - 00 y
These integrals are easily done, and the result is

(35) £,(0y) =220y glx) hly)

where

.

%(a - lx!) lxl La
(36) g(x) = <

0 lxl >a

\

Dl(b-lyl)cos be + D, sin le'

= ¢ |yl<b
(37) h(y) = 1
0 ly| >
\
and
2
(38) D, =glz_ {E_ . "

Next, for f, (x,y), we have

(40) f,(x,y) = S S Fz(lg‘.ky)e-ﬂs‘x e Y ak ax

-00 =00

1691-1



(41) S S e -ikyy dk,, dk .

-00 =00 l - k2
X

Doing the integration on k, first, we find: ™

00 -ikxxdk ()
e 2
(42) 5 % -4 H, (lxl.lkz-kz).
k% - k% - K2 Y
- 00 Y X

The integration on ky then yields

(43) f,(x,y) = S [+1rHc()Z)(|x| ‘kz —k;)] e KyY dkcy

(44) = 2wi

The integral in (43) is known as Weyrich's integral. o
Thus, (32) gives

b a . -ik | %% + yz
4bi e
w v= (2 s ny) e
(o]

x2+y2

y=-b x=-a

and since g(x) = g(-x) and h{y) = h(-y), Y may be written

* Equation (42) is derived in Appendix B.
w. Magnus and F. Oberhettinger, '""Formulas and Theorems for the

functions of Mathematical Physics,' Chelsea Publishing Co.,
New York, 1954; p. 34.

1691-1 10
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-iklx2 + yz

16bi . b a e
(46) Y = —— S S g(x) h(y) dx dy.
awp,o‘n' XZ + y.Z

y=0 x=0

Finally, substituting for g(x), h(y),

8bi (P (2 Ty poleikxE
(47) Y= S S (a-x) [D, (b-y) cos + D, sin 2 |&———— dx dy.
PYATIN b bl 24 2
y=0 x=0

It is convenient, for numerical evaluation of Y, to normalize
Eq. (47) with respect to the free-space constants. Let kg be the free-
space propagation constant,

I——_Zn'
(48) ko =W poeo -_K—o.

(Ao is the free-space wavelength), and let y, be the free-space character-
istic admittance,

(49) yo =|=2
Ko

Then (47) may be written

A B
(50) Y, = ;’X(-)- =8 ]_z iS S (A-m) [CI(B-g)cos%g— + C, sin %]

n:o €=O

where

(51) A =kga

11



(52) B =kgb

_ A 1 k )z 2]
(53) C1 = = _ - — - E
i () ()
_ A.2 1 _k_ 2 T 2
R A Kko) *(Ts)]

and Y, is the normalized aperture admittance.

NUMERICAL RESULTS AND INTERPRETATION

Equation (50) has been evaluated in the university's Numerical
Computation Laboratory with the IBM 1620 Digital Computer for three
sizes of apertures:

A A
(a) A=%, B=w (T°by_°)

2
. 3\ 3
_ 37 3w o o}
(b) A==—, B > (_8 by———-4 )

(c) A=w, B

1
(8]

3
N
NIOV
o

<
7
S

The computation was done by means of Simpson's rule, after an
appropriate change of variables. The details of this calculation and the
1620 Computer program used are discussed in Appendix C.

The numerical results are shown in Figs. 2 through 6, The

admittance Yy is plotted in terms of normalized conductance G, and
normalized susceptance Bp:

(55) Y, =Gy +1iB,.

1691-1 12
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Fig, 2.

Normalized aperture admittance.
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Fig. 6. Normalized aperture admittance.
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With C and ¢ defined by
(56) L = C e-iq),
ko

the results are given for various values of C and ¢.

Figures 2 and 3 show Y, for the case A --g- » B=w. Figure 2
gives the results for 0 C<1and 0< ¢ <£90°, ahd Fig. 3 for 0< C<5
and 0 < $ £90°. Figures 4 and 5 show Y, for the case A = —"—, B = 3“' .

In Fig. 4, the limits are 0< C<land 0 <4< 90° and in Fig. 5, z
0< C< 3. Figure 6 shows Y,forA=u, B=27r and 0< C< 2,
0<$<90°.

Finally, as a check on the numerical results, the integral for Y,
may be evaluated approximately for the case where k has a large
(complex) value. In Eq. (50),

-i_1.<_inz+§z
6o ¥, ”’fiS f (&) [Cx(B E)cos e + a1 n"g]e <2 an dt

n_o g—o B lnz + gz

the change of variables:

(87) n=rcosgb
(58) £ =1rsgin®

gives the substitution

[k IT—z
- L )
(59) £ kO) dndE=e ko > dr d.

If (k/ky) has a large (negative) imaginary part, the only contribution
to the integral in (50) will occur in the vicinity of r = 0. In this region
the other terms in the integrand may be approximated by

1691-1 17
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(60) (A-n) > A

(61) Ci(B-£) cos 2 = ¢ B

.owéE
(62) CZ Slng _0-

Also the range of integration on r may be extended to infinity with little
change in the value of the integral. With these simplifications (50)
becomes

r
o 2 -i(i)r
ig Ac,Be \kKo/ 4ar a0

k
(64) = 4w C, BZ<E>

From (53), for large (k/ky), C; becomes

2
(65) R (_k_>
4T B k

Y

o
so (64) yields

Y
Y,T K

I
-

(66)

a surprisingly simple result. This behavior for large (k/k,) is clearly
indicated in Figs. 2 through 6.

For small (k/kg) it is difficult to find a simple approximation for
Y, from Eq. (50). However, for the case where k/k, is purely imaginary,
it is easy to see that Eq. (50) gives a purely imaginary admittance,
because C; and C, are real and the integrand has a real value.

18




The reason for this can be appreciated by examining Eq. (23) for
the magnetic field. In the aperture, (23) gives:

. [kya k.b
_ 2 2~ Jcos| Y2 .
1) m, =L I@_‘g‘” ® (k2K Sm( 2 )C S( z) il cikyy
WuoV a "kxkz (.".Z - k? bZ) € © : X dky.

-00 =00 y

This may be written

o o ex
(68) H =Q_)pi_ IE;‘J_S g Gy (K k) Gk ) e Hoex -ikyy dk, dk
o

-00 =00

where

6 k)= L= :
e Gl = o e
2 .2 sin(k—}z{i)cos(lj._b.)
- (k -ky) 2
10) Gt i) = 5 s
y

Then by making use of the convolution theorem

(71) (—Zl;r‘)z ‘g‘ S. gl ("1: g)gz(x-'ﬂ» Y-g)d’ﬂ dg = 5 S Gl (kX’ kY)GZ(k’X’ kY)

-00 =00 - 00 =00
ce M TUYY g dk,
where
“ e -ik x -ik_y
(72) gl(x,y)=§S\ Gl(kx,ky)e e Y dk_ dky
-0 =00

1691-1 19



o9} [s -] . .
-ik,x ~1kyy
(73)  g,lxay) = g G,lky ke e dk, dky

-00 =00

and the transform pairs given by Eq. (22) and Eqs. (40) through (44).,
Hy may be written

- i |2 9
(74) Hy = opg ab(2+ 7)5‘ S Cos—(yg

n=-2 £=-
2

N o

—ik|'qz+§z
L dn dt.
'nz + gz

Now for the case where Re(k) = 0, the integrand in (74) is real,
k% is real, and hence Hy is purely imaginary. This means that the
electric and magnetic fields in the aperture are in time quadrature.
The complex power flow through the aperture, as given by Eq. (24),
is therefore imaginary.

This situation is similar to the case of a large waveguide terminated

by a small cutoff waveguide, as illustrated in Fig. 7.

Large Waveguide

Incident Small Waveguide
—
T E,, Mode Below Cutoff

Fig. 7. Waveguide analogy.

In the small waveguide, which is cutoff, the electric and magnetic
fields are in phase quadrature and the effective termination of the large

guide is a pure susceptance.

20
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It is interesting to note that for k = 0, the magnetic field is quasi-
static. For a fixed aperture size and fixed frequency, the condition k = 0
corresponds to € = 0, 0 = 0 in Eq. (1), which leads to a Laplace's equation
for the magnetic field. (The case k = 0 can also be interpreted as the
zero-frequency limit; but since the curves in Figs. 2 through 6 are plotted
for constant A = k,a and B = kb, the physical aperture size must be
considered as varying inversely with frequency in this case.)

Y

CONCLUSIONS T

j 9608 o

The terminating admittance of a rectangular waveguide radiating

through a ground sheet into a lossy half-space has been'found. Numerical
results have been computed for three aperture sizes and are given in
Figs. 2 through 6. It is noted that if the propagation constant k is imaginary,
the aperture admittance is a pure inductive susceptance. Also, for large
values of k, the normalized aperture admittance is approximately given
by k/k,, independent of the aperture dimensions.

These results should be useful for experimental measurements of
the properties of a lossy medium (such as a plasma). From experimental
values of aperture admittance, the propagation constant k may be found
from Figs. 2 through 6. Then the permittivity and permeability of the
medium can be found from k by Eq. (1). fthor
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APPENDIX A

The purpose of this section is to justify that the field generated by
the aperture in Fig. 1 is TE to the y-axis.

The aperture field is assumed to have the form:

2
Ecos %X; lx,ﬁ%, ,y'S

0 : elsewhere.

No

(A-1) E (x,y,0) =

The fields in the region z > 0 generated by this E,(x,y,0) will be the
same as those generated by a magnetic sheet current in the y-direction
of the form

- :—bcos{X: lx"ﬁ%, ly,ﬁ

Nio

(A-2) K, (x,y,0) =

0 : elsewhere

which radiates in the center of an infinite lossy medium (i.e., with no
ground plane). That this source is equivalent to the aperture field in
(A-1) may be seen from the following discussion.

Suppose a source S, connected to the waveguide behind the ground
plane, generates the fields (E, H) in the waveguide and in the lossy region,

as shown in Fig. A-1.

Visualize a hypothetical surface ' ) ' located a slight distance in
front of the ground plane,as shown in Fig> A-2. )

Now suppose electric and magnetic sheet currents of the form

oof |

X

5>

=l

(A-3)

|
n>
B>
X
ol

1691-1 22




(E, H)
<SF

Fig. A-1. Source-excited aperture.

)

.
O—|

t A

:-—-»n

!

Fig. A-2. The surface Z.

1691-1 23
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are placed on the surface Z‘ With all sources, S, 3’ —/, acting simul-
taneously, it may be seen that the fields to the left of will be the

original E,H; the fields to the right ofz will be 0,0 (i-e., zero electric
field and zero magnetic field). The reader may convince himself of this

by noting that these fields satisfy Maxwell's equations in all regions and
satisfy all boundary conditions.

Next suppose the sources J K’ are allowed to radiate by themselves,
with the source S turned off. From superiomtlon, it is clear that 3, K’

will generate fields -E, -H to the right of ) and 0,0 to the left of

But since the fields resulting from E/,RI to the left of are zero, the

ground sheet and waveguide structure could be removed without in-
—_—y, =/

fluencing the fields to the right of z . Thus we may consider JK as

radiating in an infinite medium with no ground plane.

S —
Finally, we reverse the sign of the sources J ,K. I.e., let

PN
= X

1
i
=l
o]

(A-4) _y

89>

= E X

=1
0
P

flow on z . Then the fields to the right of Z will be +E,+H and the
fields to left are 0,0, as shown in Fig. A-3.

]
3
(]
0,0 5K EA
|

Fig. A-3., Equivalent sources.




Hence one possible set of equivalent sources for finding E,H to the
right of would be J,K of Eq. (A-4) radiating in the infinite lossy

medium.

However, a simpler equivalent source may be found as follows.
Consider the effects of J and K separately. A siigle source J or K

Let the fields
resulting from T be EJ,T-IJ, and let those from K be EK’ﬁK For an

acting alone will generate fields on both sides of

electric source J, the electric field EJ is s Tmetric and the magnetic
field ﬁJ is antisymmetric with respect to . For a magnetic source
K, the field EK is antisymmetric and the field ﬁK is symmetric with
respect to . On the left of z, with both J and K operating,

EJ +‘EK =0
(A-5) _ _

Therefore EJ = 'EK and ﬁJ = -_I-IK on the left. But from the symmetry

properties discussed abovc,. it follows that on the right side of ) ,
| Ej = +Eg
(A-6) _ _
HJ = +Hgk -

However, in this region

*If a field A is symmetric with respect to the z = 0 plane, it satisfies

At(x ’Y’z) = At(x’Y’ -Z)
Ay(x,y,2z) = Ay (x,y,-2)

where At is the component of A transverse to the z = 0 plane and A, is
the z-component (normal component) of A. If the field A is antisymmetric
with respect to the z = 0 plane, it safisfies

Ai(x,y,2) = -At(x.y,_-z)
A.Z(X:Y: Z) = AZ(X:Y:"Z)° ‘
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E;+Eg=E

(A-T7) _ _ _
HJ + HK = H

so that on the right of E
= .= .E

E+=E =

J K >

(A-8) -
. =H. = H

e

Thus for the source J acting alone, the fields are as shown in
Fig. A-4; and for K acting alone, the fields are as shown in Fig. A-5;

where by i‘-‘:i ,» T H on the left side of E is meant the symmetric or

2 ' — —
antisymmetric image of the fields ]-::-,}—{ on the right side (E and H are

the fields of the original problem to the right of Z ). By superimposing

J and K, it is now clear why the fields of both together are 0,0 on the
left and E,H on the right.

alone will produce E.H to the right of ) .

It also follows that a source 2K ting alone or a source 2T acting
ai Hence either one may be used

alone as an equivalent source for the aperture field of Eq. (A-1). We
choose to use 2K, of course, because the E field is assumed known.

-_ — N
Hence it has been justified that the source 2K = 2E X n in (A-2)
is a suitable equivalent source for Ey in (A-1).

Next we show that K, in (A-2) generates a field TE to the y-axis.
To do this, we make use of the Carson form of the reciprocity theorem .*

__ Suppose a pair of sources .-T-a,lza radiate and generate the fields
E,,H,, everywhere in space. Suppose also a second pair of sources
Jp: Kp (completely independent of the first pair) radiate, producing the
fields Ep,Hp. Then the Carson reciprocity theorem states that

*
The fact that the field is TE to the y-axis could also be shown directly
from the Dyadic Green's Function for the problem.
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Fig. A-4. Equivalent sources,

a2
-— —— ' —
_E H — E
2 2 K 2 °

Fig. A-5, Equivalent sources.
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wo (@ 5% ga- (& E-& - S
Va Vb

where V, is the volume occupied by sources "a' and V, is the volume

occupied by sources '"b''.

In the present problem, let the ""a' sources be the magnetic current
given in (A-2), i.e.,

J, =0
(A-10) A
Ki=y Ky

Then E,, H, will be the fields of the aperture problem. As the "b' source,
let us choose a small electric dipole oriented in the +y-direction and
located anywhere in the region z > 0. I.e.,

Jp =9 B(x-x") Bly-y’) B(z-2)

(A-11)

where D(x) is an impulse function at x = 0. The fields Eb’ﬁb will then be
the fields produced by this dipole. In particular, with the dipole oriented
in the y-direction, it is known that the magnetic field B}, will have no
y-component. Therefore, since K has only a y-component, there results

(A-12) S‘g [J—a -Eb - K, * Hyldv=0
Va

and hence from (A-9) it follows that

(A-13) Sgg (3, - B, - Ky + Hyldv = ﬁg Ty - E,)dv = 0.
Vp vb
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But the integral in (A-13) is merely

(A-14) Sﬁib - Eydv = ﬁg Eay(x’,y’, 2°) 6(x-x") 8(y-y’) 8(z-2z/) dx’dy’dz’
Vb
= Eay (x»y z)
so that

(A-15) an(x,y,z) =0,

which we wished to prove.
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APPENDIX B
EVALUATION OF EQUATION (42)

In Eq. (42), it is necessary to evaluate an integral of the form:

o -ikyx

(B-1) (a,x) = S‘ s dk,,
az - kZ
- 00 x

where @ is complex and x is real. Define

(B-2) a=a’-ia"

To evaluate (42), the substitution
(B-3) a? = k% - k?

Yy
will be made. Since ky is real and

(B-4) Im(k?) < 0,

it is noted that for this problem Q can be restricted to the quadrant

(B-5) a’>0

(B-6) a’>0 .

Consider first the case where x > 0. To integrate (B-1), let

(B-7) kx = ‘a COS e
where
(B-8) 0=0"+i07.
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The path of integration in (B-1) is given by

(B-9) Im(k,) = 0
or
(B-10) Im(-Q cos 6) = Im[-(a,-ia”) cos(8'+ i9//)]

/7 . Lo K] u” ’ ”
0 sin ® sinh © +a cos ® cosh©® =0.

Hence the equation of the contour in the 8-plane is:

/Y

(B-11) tan 6'tanh 8" = - 2,
Since
(B-12) lim tanh 8" = 41
0+
(B-13) lim tanh 8"= -1
S R
as 6" goes to t«, tan Glapproaches - 9_'_ and as eﬂgces to -m, tan 8
a .
approaches + .g_’ . If the path nearest the origin of the 8-plane is chosen,
the contour is as shown in Fig. B-1, where
/ 1/
(B-14) 0, =tan™! <+ %;—)
! -1 a""
(B‘].S) el = tan (' ?)

Also since

! i
(B-16) Re(k,) = Re(-a cos 0) = -a' cos 6 cosh 0"+ a"sin6’sinh 9”,
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and for the region 91/ <0’< X, cos 9/> 0, sin "> 0, sinh 87 < 0, and
cosh 8> 0, it follows that the point 8’ =6{, 8”=v0 corresponds to k, = -».
Similarly, the point 8'= 8}, 8” = +x corresponds to k, = +o. Hence the
direction of integration is as indicated by the arrows in Fig. B-1.

B“
A

\Frrmm—rem =

NQD
o

—-————--m

Fig. B-1. Contour of integration.

With the path of integration located, the correct sign of the square
root in Eq. (B-1) can be determined. From Eq. (14) (of the main report),

_ vz _ vz _ 12 -{42_ 2
(B-17) k, =| k K- Joc K2

and from Eqs. (15) and (16), the root should be chosen so that
(B-18) Re(k,) 20

(B-19) Im(k,) <0 .

The correct choice is

(B-20) | a® - k2 = +tasin 0.

That this is correct may be seen as follows. First, if (B-20) is used,
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. ’ :
(B-21) Re(k,) = Re(@ sin 0) = a'sin 0 cosh 8°+ a” cos 0’ sinh 6%
and
/ ,, / 74
(B-22) Im(k,) = Im(Q sin 6) = a’cos 8'sinh 8 - a” sin 0 cosh 0”.

/ /
For the region § < 0 < % , sin 8 >0, cos 8'> 0, sinh 6”< 0, cosh 87> 0,
so

o / / r/s
(B-23)  Im(k,) = @ cos 8 sinh 8"~ a’ sin 8" cosh 6 < 0.

’ !
Also for 03 <9<E-,

Yi . e, &
(B-24) tan 6 = 811 > 2
cos 6 @’
or
/
(B-25) a sin 0'> a” cos o’ ,

7
and because 8 < 0 in this region,

”
(B-26) cosh 8”> - sinh 6%,

so that from (B-25) and (B-26),

/ ’
(B-27) o’ sin 6 cosh 07> a” cos 9,(-sinh 6")

and therefore

2 4
(B-28) Re(k,) = @’ sin 8’cosh 87+ a” cos 6%sinh 8> 0.

. T 4 ‘ . . . / /
For the region > <6 < 9z function signs are sin ® > 0, cos 6 < 0,
[/
sinh o’> 0, and cosh o> 0, so that

v #
(B-29) Im(k,) = a’ cos 6'sinn 8” - o sin 9,cosh o’< 0.

1691-1 33



/
Also for % <8< 9,,

/
(B-30) tan 6 = 8in ® <. 9_”
cos 0" a’
or
. ’ p
(B-31) o’ sin 8> a” (-cos 9)

v . . .
and because 9 > 0 in this region,

/4
(B-32) cosh 8 > ginh 08”

so that from (B-31) and (B-32)

" W
(B-33) o’ sin 8 cosh 8 > a” (-cos 9’) sinh 0 .
Hence
/ " / /
(B-34) Re(k,) = a’sin 8'cosh 8”+ a” cos 8'sinh 6”> 0.

Thus it is seen that Eqs. (B-18) and (B-19) are satisfied for the
choice of sign in (B-20).

Therefore with the substitution (B-7), (B-1) becomes

+ia 6
(B-35) 1o, x) =5 e XIXCOS T i
Co

where Cgis the contour in Fig. B-1.

For the case where x < 0, Eq. (B-1) may be written
+1k lxl

Joe

(B-36) {a,x) = S‘
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For this case the substitution

(B-37) k =+ cos ©

is appropriate. The path of integration is found from

(B-38) Im(ky) = 0
as above. Since the change of sign between (B-7) and (B-38) does not
change the result (B-11), the contour is the same as for x > 0. The only

difference is that the direction of integration is reversed from Co- For
the radical in (B-36), the correct sign is

(B-39) I a? - k; =+ 0 sin ©

because, as has been shown above, this sign satisfies (B-18) and (B-19)
on Cg.

Substituting (B-39) and (B-38) in (B-36) gives

+i|x{Qcos O
(B-40)  La,x) = - § GFilxlacos © 4
-Cg’
where "-Cq'' means "along the path Ce but in the opposite direction to Cg''.

Finally, by changing the direction of integration to +Cy and dropping
the minus sign, (B-40) may be written

+i Qa 0
(B-41) Ko, x) = S e i[x[a cos a6 .

Cq

Equation (B-35), which holds only for x > 0, is seen to be identical
with (B-41) for x > 0, and therefore (B-41) is correct for either x > 0 or
x<O0.
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Finally, (B-41) may be evaluated with the aid of Sommerfeld's
contour integral for the Hankel Function®

(B-42) Hf:)(p) =1 5 olpcos O 49
™

Cx

where the contour Cyy is shown in Fig. B-2 along with Ce-

9"

1.0

m[‘;

Fig. B-2. Hankel function contour.

Since the integrand in (B-41) has no singularities in the region
between Cgy and CH in the 0-plane, it is plausible that the integral (B-41)
will have the same value whether the contour is taken along Cg or Cy-
To prove that this is the case, it is necessary first to locate those
regions in the complex 8-plane for which eti[x[Q cos © approaches zero
as e"goes to Too . (For any integral of the type {B-41), it is clear that
the path of integration must go to infinity in these regions if the integral

is to converge.)

First, from the relation

(B-43) x| cos O _ i|x|Re(a cos 8) - |x|Im(a cos 8)

*i'partial Differential Equations in Physics,' A. Sommerfeld,
Academic Press, Inc., 1949, Chap. IV.
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it may be seen that the dividing lines between the regions of convergence
and the regions of divergence satisfy the equation

(B-44) Im(@ cos 6) =0 .

Hence from (B-10) and (B-11), the dividing lines satisfy:

? Vi r
(B-45) tan 6 tanh 8 = - ‘Z‘r

Three such lines are shown in Fig. B-3. (The line separating region @

N %
7 NN L

N A
N AN N\

Fig. B-3. Regions of convergence and divergence.

from region @ is the path Cg.) Now since

.e'
4 1

B-45) a:a-ia": oze_1 = acosE)/-ia sinel,
( ) 1

it follows that
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(B-46) Reli|x|acos®] Re[i[x[(’a,coser-i[alsinei)

/ /4 /
- (cos 6’cosh 8 -i sin 6 sinh 9/) ]

” “
-0
= Ixllo] poinete])e - singoee™)

and it may be seen that for points in regions and @

. . 0
(B-47) lim e+1lx,acos9= lim e+1lx,acos =+o
6"~ 1o o o
and for points in and @
6 +i 0
(B-48) 11m e+1,x|OLcos lim e 1,x|OL cos -0
9 s + o e'—’-—oo

Thus integrals with contours going to infinity in regions and @
diverge, those with contours going to infinity in regions and @
converge. The Hankel Function contour in Fig. B-2 of course gives a
convergent integral, because it is completely in region @ . The contour
Co of Eq. (B-41) lies on the boundary between region and region

Now the fact that

s . i 0
(B-49) I(OL,x) = S e+1|X|0Lcos Gde= S’ e+1lX,OL cos de = “'Hf:)(oc lxl)

Co Cy

may be proved as follows. Consider the closed contour of Fig. B-4.
C, is the portlon of C lying between -A < o< A, C, is a horizontal

contour at 6" = +A, C, is the portion of the C contour between
A< 98¢ A, and C 1s a horizontal contour at 7= -A. Since

(B-50) §0) = otilx| cos @

is an analytic function of 0 for all finite values of 6, from the Cauchy
integral theorem it follows that
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Fig. B-4. Closed contour of integration.

(B-51) S £(8)d® =0 .

Gy 1C,1Cy+Cy

We will show below that

lim S £(8)d® = 1lim £(8)ad = o
A -* 00 A >0
CZ c4

which will give us the desired relation between the integral on Cg and
on Cpy-

Consider the integral

S £(6)qe .

C.
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(B-52) 0< i|x|acos®

S;ilxlacosede 55 . =S‘eRe[i,x ,awseée

C, C, Cz

- S' . lxlalsin 0’sinh A + ,xla” cos 6’cosh A 46’
C,

The left end-point of C, is given by (from Eq. (B-11)):

)
-a“/a
(B-53) 9/= 98 = tan™! -—/———J
tanh A
. . . 3w
and the right end-point of C, is less than > s 8°
3w
2 / / " ’
. e - 3
(B-54) S’e+1,xlacos | < S\ elx,a sin 6 slnhA.+'xlOt cos B cosh A Y
,_
Cz 0 _60

3w ’

— /

2 |x|a’cos e'coshA.[l +=; tan0'tanh A]
(B-55) = g e ae’

/
On the whole path C,, cos © is negative and there is a constant B > 0
such that

(B-56) cos o< - B<O.

Consider the function
(1, /
[1 + = tan 0 tanh A]-
Q

/
For 6 = 90, it is zero. Since for every o’

1691-1 40




T e ©

e ————

1691-1

d ‘
(B-57) ag,[tan 8721
the inequality

/ /
a / a ’
(B-58) 0 [1 + a—-;(tanh A)(S -.90)] < [1 + 57 tan 0 tanh:A]

/
holds for 8, < 0 sﬂ . Therefore the integral in (B-55) satisfies the

inequality:
3w

a/
S 2 lxld cosecoshA[1+ tan 6 tanh A]
e

/

(B-59) do

e’:e 3n
2

4

o .
|x|a BcoshA[1+ 5 (tanh A)(6"- 6 Jde

IIC_/j

3w

-.IXIQ/B 8,sinhA - 'x lOL'B cosh A- Ix'G,B(‘Z— - eo)sinhA.

- € -e

IxIOL’ B sinh A

Combining (B-54) through (B-59) and taking the limit as A goes to +» gives

the result:

+i a 0
0< lim S‘ JHilxlacos® gl im h(A)= 0
A 7o A7
2

or
(B-60) lim ( efilx|@ cos®40- ¢

A 7w C,

In an analogous manner, it is simple to show that for the integral

along C,:
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+i a 5]
(B-61) lim { e ifx|a cos 30=0.
A 7w

Cy

As A goes to infinity, C, becomes C, and C; becomes -C

Therefore from (B-51) 6 H
+ 0 i 0 +i|x|a 8
(B-62) S’e i|x|acos 4o = _S‘ehlxla cos O o S‘e i|x|acos 40
Co -Cy Cy
or
+i 08 2
(B-63) S‘e IIXICICOS dez-n-H(o)(alxl)

Co

which is the desired result.
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-APPENDIX C

In this appendix the method used for evaluating the aperture admit-
tance numerically is discussed.

From (50), the normalized aperture admittance is given by

) A ~B
(C-1) . Yo = %o =8 :AB_’IS , S (A-"])[Cl (B-g)COS—'ILBg +Czsin—"§']

n=0 £=0
_i._lf... 242
. (ko)ln +§
,n2+§2

dn d§

where

S (ORO
1 : \
= k ™
e gl ).

Making the change of variables

(C-4) n=Rcosb
(C-5) € =R sin ©
gives:
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cose
(C-6) = -E S Sﬂ (A-Rcos 9) [C1 (B-Rsin O)cos % (RsinB)

[k

- R
+C, sinZ (R sin 9)]e (ko) dR d@

E B
sin©
+8—15 S (A- Rcose)[Cl(B Rslne)cos— (R sin8)
9=60 R=0

+ i __‘I'l' 0 — (k )
CZ sin (R sin ) e o dR de
where

(C-7) tan 8, =

>

This change of variables is helpful because the singular point at
n = £ =0 in the integrand of (C-1) is troublesome for computer evaluation.
The region of integration in (C-6) in the R-9 plane is shown shaded in
Fig. C-1.

4’R

Fig. C-1. Region of integration in R-9 plane.
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Next let

(C-8) k - cei?.
ko
Then
i(k )R RC sin ¢
-1 — - .8in
(C-9) e Ko/ =[cos(RC cos ¢) -i sin{RC cos ¢)]e 8 .
Ci1 and C, may be split into their real and imaginary parts:
1 ‘|
- . - . . ™
(C-10) C, = Cyy -iC; = ypo=r: [Cz cos2¢ - iC? sin 2¢ -(E)
1 g
- . - 2 s 2 s r
(C-11) Ca = CZr - lczi = IE [C cos 2¢ - iC*® sin 2¢ + (B) |-

Then the normalized conductance G, and normalized susceptance By, i.e.,
(C-12) Y, = G, +iBp,

may be written A

8, cos®

{[C,r sin(RCcos$) + C; cos(R Ccos ¢)]£(R,6)

(C-13) G, = 8

» i
—

+ [Czr sin(R Ccos $)+C, ; (R Ccos ¢)]g(R,9)}e—RCSin¢de¢

T B
2 sin 6
+8B (" {[c,, sin(R Coos 0)+C,5 coslR Ccos ) 1(R, 0)

6260 R=0

+ [ Cpr sin(R C cos $)+C,; cos(R Ccos »)1g(R,0)}e *© sIn® R do
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A
O, cos®

(C-14) B, = -E g S. {[Cyr cos(R Ccos$)-C,; sin(R Ccos $) ]{{R, )

+[Cz rcos(RCcos¢)-C, ;sin(R Ccos ¢)]g(R,9)}e-Rcsm¢de9
B
3—2 S {[clr cos(R C cos $)-C,; sin(R Ccos ¢)]{(R,6)
+[C, cos(R Ccos ¢)-C,, sin(R Ccos ¢)]g(R,6)}e'Rcsm¢dee
where
(C-15) £(R,0) = (A-Rcos 8)(B-R sin0) cos]—*; (R sin 9)
(C-16) g(R,0) = (A-Rcos 6)8 gin}—'; (RsinB) .

These integrals have been evaluated numerically on the IBM 1620
Digital computer at Ohio State. The procedure used is as follows.

Each double integral is evaluated as an iterated integral, the in-
tegration on R being done first. Simpson's rule is used throughout.
F1rst with 6 held constant at each of the values 0, 0.1 (TI'/Z) 0.2(mw/2),
(17/2) the R-integral is computed by breakmg the range of R into
ten submtervals, evaluating the integrand at the end-points of the sub-
intervals, and summing according to Simpson's rule. These values, which

form the integrand for the e-integral, are then summed again by Simpson's
rule to evaluate the O-integral.

The program for these calculations was written in Fortran (OSU
Version 2) and is included below.

1691-1 46




ADMITTANCE OF RECTANGULAR APERTURE

READ 1+ N

DO 14 M = 1l Nv |

READ FesAeBeCoePH]

D=PHI/57e3

L = ATAN(B/A)

DIMENSION vk(2)e S1(2)y TH(]11)e ARG(4)
BR(1)=(C*CH*¥COS(2e*¥D)=Fe8697/B/bB)/12e6464/B/ D
BR(2)=(CRC*¥COS(L2e¥D ) +IeBOYT7/B/3)1/3De 7299/
BI(1)=CHC*SIN(2e%D)/12e6464/8B/8
Bl(2)=CH¥CH*SIN(2e*D )/ 390 7299/8

DO 13 U=lelled

P=U-1

TH(J)=0e157079%P

IF(Z-THIU)Y) 14242

DR=B/1Ue/7SINITHIU))

GO 70 3

DR=A/10e/CUS(TH(U))

DO 8 (=1sl101

H=]-1

R=H*DR

ER=EXP (~R®*C*SIN(D))
FlA-RXCOS(THINNIIH(PB-R¥SINI(TH(UI) I *COS (36 1416/B#R¥SIN(TH(J)))
G=(A-R¥COS(TH(J)I)I)I*SIN(3¢1416/2*¥RESIN(TH(J)))

ARG (1)1 = (BRI ¥SIN(R*¥C*COS(LII+LI (1 HIHCOSIR*CHCOS(D) ) ) *F *ER
ARG(2)1=(BRI(2)*SIN(RXC*COS(DI )+ (21 ¥CCS(RAC*COS(D) ) ) *GHER
ARG(3)1=(BR(1)1%#COSIR*C*COSUII=2l (1 I XSIN(R*¥C*¥COS(D) ) I *F LR
ARGU4 )= (BRIZ)IACOSIRHCHCUSIU) ) =31 (2 )X IN(RXC*¥CIOL(D) ) ) %5*ER
GO TO (4461706079607 0607 e0e3)0l

S=Ue

T=0e

S5=S+2e6667*Z5 /A% (ARG (1 )+ARL (2) ) ¥R

T=T+2 6666 7%8B/A¥ (ARG(3)+ARG (4 ) ) *DR

GO 70O 8

S=S+10.6667*B/A¥ (ARG (1) +ARG(2) ) *#DR

TsT+10.6667%H2/A% (ARG(3V1+ARG(4))*DR

GO TO 8

S=S5+5e3333* /A ARG (1 )Y+ARG (21 *DR
T=aT+5e¢3333#8/7A% (ARG (3 )+ARG (4) ) *DR

CONT INUE

GO TO (Fellel2011912e¢1 1012011012011 410) 00

GN=0e

BN=0e

10 GN=GN+0«05236#5

UN=8BN+005236%*T
GC 70 13
GN=GN+0+20944 %S
BN=BN+0e20944%T
GO TO 13

12 GN=GN+0e10472%S5

BN=BN+0e10472%T

13 CONT INUE

L4

YNM=SURT (GN®*GN+BN*EN)

ANGY =57 « 3XATANIOBN/GN)

X=M

PUNCH FeXsAeBe¢CePHIsGNsDN s YNMeANGY
STOR

END
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